On the Hardness of Input Reconstruction Attack via Gradient Sharing in Federated
Learning: A Cryptographic View

Abstract—Federated learning (FL) has become one of the most
popular paradigms for allowing collaborative learning among
multiple parties. It is presented to be privacy-friendly by
guaranteeing that local data never ‘“leaves” personal devices
but only certain intermediate parameters such as gradients
or other model updates are shared. There are few analytical
results on the problem of reconstructing the input training
samples from gradients, but they all consider very restrictive
settings, for example, the batch size should be small. In this
paper, we take a step further to investigate this problem
more deeply from a cryptographic view. Considering a multi-
layer perceptron (MLP) network with ReLU as the activation
function, we can mathematically formulate the problem of
input reconstruction using the gradient information shared
in FL, as a classical cryptographic problem called hidden
subset sum problem (HSSP). HSSP is an extension of the well-
known NP-complete problem — subset sum problem (SSP) and
is an established tool for cryptanalysis. Via existing HSSP
tools we can analytically show that the difficulty of input
reconstruction attack depends heavily on the parameter of
batch size, denoted as B. In particular, the time complexity
of existing HSSP solvers is approximately O(B°). Via this
analytical result, we further show that applying secure data
aggregation techniques such as homomorphic encryption and
secure multiparty computation, would be a strong defense as
it directly increases the time complexity to O(N 9BQ) where
N is the number of local clients in FL. To the best of our
knowledge, our work is the first to mathematically formulate
the privacy problem in FL as a cryptographic problem such
that a concrete and rigorous analysis can be conducted.

Index Terms—Privacy, federated learning, gradient leakage,
input reconstruction attack, hidden subset sum problem, subset
sum problem

1. Introduction

Big data comes with big challenges. Nowadays user
data are frequently gathered and stored in portable devices
such as phones and tablets [1], [2]. Processing such big
amount of data over numerous personal devices poses severe
privacy concerns as the involved data often contains personal
information such as location and personal profile, etc. FL
[3]-[5] was introduced to address such privacy concerns by
allowing multiple devices to collaboratively train a shared
model while keeping the personal data on the local devices.

The FL framework often consists of a number of local
participants, which have the local training dataset, and a
centralized server for coordination. Each participant is al-
lowed to send intermediate model updates such as gradients
learned by local training data to the server, and the server
updates the global model by aggregating the local gradients
together.

The claim that FL is privacy-preserving relies on the
assumption that sharing intermediate model updates will
not leak users’ private training data. This assumption is,
however, being challenged in prior work. One of the earliest
works on privacy issues of FL is the DLG attack (Deep
Leakage from Gradient) [6], which shows that FL systems
are susceptible to gradient inversion attacks, i.e., reversing
the original training data from the observed gradient in-
formation. The main idea of DLG is to optimize synthe-
sized data such that its gradients match the real gradient
produced by the real training data. Many studies further
improve the DLG attack by increasing the attack efficiency,
improving the resolution of the reconstructed data, or in-
creasing the batch size [7]-[17]. Besides the optimization-
based approaches, another line of work seek to analytically
analyze the privacy threat in FL. Geiping et al. [8], Fowl
et al [12] and Boenisch et al. [10] show that the training
data can be perfectly reconstructed under certain restrictive
settings, such as only one sample being activated within
a mini-batch or the case that the attacker can maliciously
change the model parameters or the architectures.

Despite the remarkable progress in breaching the privacy
in FL, it has been argued in [18] that FL might not be
vulnerable to privacy attacks because existing attacks are
effective only under specific and sometimes impractical
assumptions. As an example, the batch size, i.e., how many
training samples are processed before updating the model,
is an important parameter of the gradient inversion attack
of FL. Existing attacks are evaluated with limited setups
that the batch size is quite small, or require additional
assumptions such that the input samples within a batch
should not share the same class label. For a reasonable batch
size such as 128 or 256, the attack performances deteriorate
severely [9], [11].

The debate on whether FL is vulnerable to privacy
attacks in practical settings has caught our attention and
motivated us to investigate it further. More specifically, our
research question is as follows: Is it possible to mathemat-
ically analyze the difficulty of the input reconstruction
attack caused by gradient sharing in FL? For example,



how does the difficulty change with relevant parameters
such as the batch size or the number of neurons?

To answer this research question, we consider an MLP
with ReLU [19] activation function. We mathematically
show that the gradients of the first layer produced by a
mini-batch are equal to the product of a weight matrix and
an input matrix containing the training samples in this mini-
batch. The weight matrix can be further decoupled as the
element-wise multiplication of two matrices: one is the par-
tial gradient of the loss w.r.t. the output of the first layer, and
the other is the binary matrix caused by the activation.With
this formulation, we can further simplify it as a classical
cryptographic problem called hidden subset sum problem
(HSSP) [20]-[22]. Therefore, we can adopt cryptographic
tools for analyzing the hardness of the input reconstruction
attack in FL. In particular, the hardness of HSSP is closely
related to the well-known subset sum problem (SSP), which
has been proven to be an NP-complete problem [23]. We
show that when increasing the batch size, reconstructing
the training samples from the gradient information is more
challenging, or at least computationally heavier. Moreover,
via HSSP we can analytically show that the batch size is
indeed a crucial parameter for the hardness of the prob-
lem. For certain parameter settings, the time complexity
of existing HSSP solvers is approximately O(B?), where
B denotes the batch size. Hence, such theoretical results
explain the heuristic observation of why existing gradient
inversion attacks fail for large batch size cases. As for the
number of neurons, it also affects the time complexity but
does not dominate if it is of an appropriate size.

As a marriage of both cryptography and machine learn-
ing, our work has significant impacts on both communities.
On one hand, machine learning models often behave like
a black-box lacking reasoning and explainability. Our work
calls for more machine learning researchers to reinspect the
privacy of machine learning models from a cryptographic
view. Thereby a concrete and rigorous analysis can be
conducted, e.g., the time complexity given by the batch size
in our case. On the other hand, our work inspires how vari-
ations of cryptographic building blocks and hard problems
can be constructed in practice and how their general cases
can be verified in machine learning.

1.1. Paper contribution

1) To the best of our knowledge, this is the first work
that mathematically formulates the gradient leakage
in FL as a cryptographic problem known as HSSP.

2) With the help of cryptographic tools in HSSP,
we analytically show that reconstructing the input
samples from gradients is directly dependent on
the batch size, i.e., a time complexity of O(Bg).
This explains why reconstructing the input training
sample is very difficult for a large batch size.

3)  With the analytical complexity, we show that apply-
ing secure aggregation techniques, such as secret
sharing [24] or homomorphic encryption [25] to
share global gradients aggregated over all partic-

ipants instead of local gradients of the individual
participant, is a strong defense as it would di-
rectly increase the time complexity from O(B?)
to O(N°B?), where N denotes the total number
of participants.

1.2. Paper outline

The rest of the paper is organized as follows. Section
2 provides a brief summary of existing privacy attacks that
have been developed for FL. Section 3 briefly introduces
the fundamentals of FL and the corresponding HSSP, which
are necessary for comprehending the problem formulation
that will be presented later. Section 4 shows how to for-
mulate the problem of reconstructing input training data
using the observed gradients, and further connects it to
HSSP. Section 5 introduces the fundamentals of lattices and
briefly describes the existing attacks for solving HSSP. Time
complexity analysis and a typical defense are discussed in
Section 6. Numerical results and discussions are given in
Section 7. Finally, conclusions are given in Section 8.

2. Related work

2.1. Privacy in FL

Concerning privacy in machine learning models, there
are mainly three types of privacy attack including 1) mem-
bership inference attack [26]-[30] where the goal of the
attacker is to determine whether a particular sample was
used in training or not; 2) property inference attack [31],
[32] which aims to infer certain properties of the input
training data such as gender, class label etc; and 3) input
reconstruction attack (e.g., model inversion attack [33], [34])
which attempts to reconstruct the original training samples.
All of these attacks have also been investigated in FL. It is
shown that by exploiting the model updates shared to the
server, an attacker can infer sensitive information such as the
training data’s properties [35]-[37] and membership infor-
mation [36], or even reconstruct the input training samples
[6]-[17]. In this paper, we focus on the last threat, i.e., input
reconstruction attack, as it is intensively investigated in the
context of FL and it raises more severe privacy concerns
than the other attacks.

2.2. Gradient inversion attack

Gradient inversion attack is the most popular input
reconstruction attack in FL as the shared information is
often the updated gradients. There are mainly two types of
approaches.

Optimization based approaches: DLG [6] is the first
proposed gradient inversion attack, which demonstrates that
it is possible to reconstruct the training data with high
fidelity using the shared gradient information. The main
observation is that if two data points are similar to each



other, their gradients might also be similar. DLG first
initializes a random noise image called dummy data and
produces a corresponding dummy gradient, it then iteratively
optimizes the dummy data to resemble the training sample
by minimizing the distance between the dummy gradient
and the real gradient generated by the real training data.
The performance of DLG is limited as the optimization is
hard to converge and it requires that the image is of low
resolution and the batch size should be small. To address
these limitations, a rich line of work [7]-[15] try to propose
more advanced gradient inversion attacks, e.g., increasing
the optimization efficiency and producing accurate recon-
structed data for high-resolution images [7], [8]. Yin et al.
[9] further improved the optimization efficiency by adding
regularization and the attack can work with the batch size
up to 48. However, it requires that one batch cannot contain
two images from the same class. Yang et al. [15] optimizes
the attack efficiency and considers a more challenging case
where the gradients are compressed.

Given a reasonable batch size such as 128 the recon-
structed data samples of existing work are often of low
fidelity [9], [11]. Multiple reasons might cause such poor
performances. 1) The optimization-based approaches suffer
from the local minima problem and thus the reconstructed
samples are often quite different from the original training
data [9]. 2) The fundamental assumption that minimizing
the distance between gradients would make the synthesized
data similar to the original training data is not necessarily
true, as different mini-batch of data may produce almost
identical gradients [38].

Analytical approaches There are also a few theoretical
analyses on the privacy leakage caused by gradient sharing.
Geiping et al. [8] theoretically prove that it is possible
to perfectly reconstruct the training samples regardless of
trained or untrained models. It only considers restrictive set-
tings, e.g., only one sample is activated among a mini-bath.
Fowl et al [12] showed that it is possible to reconstruct the
input by assuming a stronger threat model where the central
server is active, i.e., it can change the model architecture.
Similarly, Boenisch et al. [10] showed that perfect input
reconstruction is possible by assuming that the central server
can manipulate the weights maliciously.

3. Preliminaries

In this section, we review the necessary fundamentals
for the rest of the paper.

3.1. Notations

In this work, lowercase letters x, lowercase boldface
letters x and uppercase boldface letters X stand for scalars,
vectors and matrices, respectively. The i-th entry of the
vector x is denoted either as z; or x[i]. Similarly, the
(4, j)-th entry of the matrix X is either denoted as z; ; or
X[i; 4]. X[é;:] and X]:; 4] denote the i-th row and column of
matrix X, respectively. [X1,...,X,] and [X1;...;X,] denote

the row-wise and column-wise concatenation of the corre-
sponding vectors. X | denotes the transpose of X. diag{X}
denotes taking the diagonal elements of the square matrix
X. ® denotes element-wise multiplication. 1, denotes the
vector of all ones of size r and similarly I, denotes the
identity matrix of size r.

3.2. Fundamentals of machine learning

Neural networks: Let fw : R™ — {1,--- ,k} be a k-class
classifier, defined as a sequence of layers parameterized
by trainable weights W. Each layer comprises a linear
operation paired with a non-linear activation function such
as ReLU. A deep neural network often consists of many
different layers. The main objective of the model fw is to
map an input to its desired ground-truth label, denoted as
x; and /;. As a result, the model weights W are updated
through an iterative training process, e.g., the mini-batch
Stochastic Gradient Descent (SGD). It repeats the following
steps for modifying the initial W: 1) sample a mini-batch
of size B from the training data {(xj,lj)}le; 2) execute
a forward pass through the model to generate predictions
for this mini-batch; 3) calculate the difference between the
predictions and the ground-truth labels, known as the loss
L; 4) compute the gradient of £ w.r.t. the weights, called
the weight gradient G, and update the weights accordingly.

Federated learning: Suppose there are N different users
and each obtains a local training dataset. They would like to
cooperate together to jointly learn a shared model based on
their datasets. Collecting the datasets from individual users
centrally would be costly and privacy-conflicting as the local
data contains sensitive personal information. FL allows these
users to cooperate without requiring each user to share its
raw data directly. Let ‘(,f,) () be the model with its weights
W) at iteration t. FL works through the following steps:

1) Initialization: at iteration ¢t = 0, the central server,
denoted as C, randomly initializes the weights
WO of the global model.

2) Local model training: at each iteration ¢, the server
first randomly selects a subset of users and each
user i receives the model f‘(,f,)() from the server
C'. Each selected user u; then calculates the local
gradient th) for f\(,f,) (1) based on one mini-batch
sampled from their local dataset {(x;, lj)}le.

3) Model aggregation: server C collects the local gra-
dients from the selected users and then aggregates
them to obtain an updated global model. The ag-
gregation is often done by weighted averaging and
typically uniform weights are applied, i.e.,

1 N
GW =23 G M
i=1

Wit — w® _ 77G(t)~



The last two steps are repeated for many iterations
until the global model converges or a certain stop-
ping criterion is met.

3.3. Fundamentals of Hidden Subset Sum Problem

Definition 1. Hidden Subset Sum Problem (HSSP) Let
Q be an integer, and let x1,...,xp be integers in Zq. Let
ay,...,ag € ZM be vectors with components in {0,1}. Let
h = (hy,...,hy) € ZM satisfy:

mod Q (2)

Given the modulus () and the sample vector h, recover
the vector x = (x1,...,xp) and the vectors a;’s, up to
a permutation of the x;’s and a;’s.

h:a1x1+a2z2+-~-+a3z3

We refer to x as the hidden private data, a;s as hidden
weight vectors, respectively.

Definition 2. Hidden Linear Combination Problem
(HLCP) Let QQ be a positive integer, and let x1,...,xp
be integers in Zg. Let ay,...,ap € ZM be vectors
with components in {0, ...,c} for a given ¢ € N*t. Let
h = (hy,...,hy) € ZM satisfy:

h=a;x; +aszy+---+aprp mod @

Given @), c and h, the hidden linear combination problem
consists in recovering the vector x = (z1,...,xp) and the
vectors a;’s, up to a permutation of the x;’s and a;’s.

Note that HLCP is a natural extension of HSSP where
the coefficients of the hidden weight vectors a;’ lie in a

discrete interval {0, ..., ¢} instead of {0, 1}, for a given ¢ €
N*.

3.4. Threat model

We assume that the central server is semi-honest (or pas-
sive), it would not change the model parameters maliciously
but it can collect information through the learning process.
With the collected information, the goal of the central server
is to reconstruct the input training samples.

4. Problem formulation

By inspecting (1) we can see that at each iteration ¢
the server C can collect local gradients {G; (¢ )}1 1,....n. For

an individual user ¢ € {1,..., N}, denotes {(x;,! )};.B=1 as

the mini-batch that produces gradient Gl(-t). How much infor-

mation about the individual training samples {(x;,; )}f 1

does the gradient G( carry on depends a lot on the model
complexity. Here we assume a multilayer perceptron (MLP)
which consists of a number of fully connected layers. Math-
ematically, a fully connected layer can be described using a
linear transformation followed by an activation function (we
consider ReLU here). Let u denote the dimension of input
x; and M denote the number of neurons in the first fully
connected layer. Define the weight matrix as W € RM >

and bias vector as b € RM. For the m™ neuron, denote w’,

and b, as the corresponding row in the weight matrix W
and the component in the bias vector b, respectively. Given
an input x;, denote the output of the m" neuron as Ym.,j
given by
Ym,j = ReLU(W] x;j + byy)

= max(0, Wi, X; + byy,). 3)
Let gwr and gp,, denote the gradient of the loss £ w.r.t the
weight w2 and bias b,,, respectively. Given a mini-batch of
samples {(x;, J)}] 1> the gradient g,, = equals the average

of all gradients computed for each of the data points that
make up the mini-batch, i.e.,

B
OL Oy,
T = = = 4
&L~ B ; Yum.; OWE, @

is given by

Similarly, gy

m

oL aym,j
b B — OYm,j Obm

)

4.1. A special case where B =1

It is proven in [17] that a single input data point x can be
reconstructed from the gradients when considering a biased
fully-connected layer preceded solely by (possibly unbiased)
fully-connected layers. The main idea is very simple. When
B =1 and find a neuron where y,,, = w1 x+b,,, the above
(5) becomes

oL oL Oy,  OL

as 2¥= = 1. Given the fact that 223 = x7, (4) becomes

Obp,
oL  OL dym OL 5  OL o

owl ~ Oym OWL Oy abmx '

Hence, if there exists one neuron m such that 5= £ £, the
private data sample x can be perfectly reconstructed using
gradients -2 W? ai)vﬁT .

As in practice the batch size is rarely 1, in the following
we will analyze a more general case for B > 1.

4.2. A compact formulation with B > 1

For the general case where B > 1, to obtain a com-
pact problem formulation, collect the above gradients of all
neurons and stack them together we obtain

T
Bw?

8wl

G, = :2 € RMx*u, (6)

T
SwT



by
9o
g = . |ecRM, )
b
Further stack all data of the mini-batch together we have

T
Xq
x5
X = € RPx
T
XB
Define the following matrices:
oL oL oL
0y1,1 0y1,2 Ut Ous
oL oL oL
L= 0y2,1 0yz2,2 T Oy2,B c RMx*B_
oL oL oL
aZJM,1 3yM,2 8@/M,B
For k = {1,2,...,u} we denote
Y11 32!1,2 dy1.B
6’1.017]c 6w1,k a’wl,k
dy2.1 32!2,2 dy2.B
Yk _ 6w27k 8w2,k aw2,k € RMXB.
OYym 1 OYym .2 9Yym. B
Ownr e Owm,k OQwg  k

With (3) we have
OYm,; ) x,[k], if whx;+b, >0
0w, k o, otherwise ’
Define a binary matrix R € ZM*5 where its (m, j)-th entry
is given by
N 1, ifwﬁxj+bm>0
™3 77010, otherwise '

Take the k-th column of X, i.e., X[:; k], and use it to further
define matrix X, as

X[ k]
X[:; k]
Xp = S RMXB,
X[:; kT
thus Y can be represented as
Y. =X, OR

Lemma 1. Ler A,R € RM*B B € RBEXM_ Then
diag((A ®R) - B) = diag(A - (BORT)).
Proof. The i-th diagonal element of (A ®R) - B is
(Ali::] ® Rfi: ], Bl ]) = (Alis ], Bl i] 0 R [:]),

where the right side of the equation is the ¢-th diagonal
element of A- (BORT). O

As for (6), we can represent the k-th column of G,, as
.
Gyl k] = 5 diag (LY})

= %diag (L(X{ ©R"))

@w % diag (L ® R)X})

® 1 ..

where (a) uses Lemma 1, (b) uses the fact that all columns
of X7 are identical.
Denote matrix D as
D =LoR e RM*E,

Stacking all G, [:; k]s for all k € {1,2,...,u} together we
thus have

1
G, = EDX' ©
Accordingly, (7) can be represented as
1 1
=—(LoR)1g = =Dl1g. 10
gb B( ©OR)1p P15 (10

4.3. Connection to HSSP

Before explaining how the above gradients formulation
is connected to HSSP, we first define the following extension
of HSSP by considering multi-dimension, since the hidden
private data is often multidimensional in the context of
machine learning.

Definition 3. Multidimensional Hidden Subset Sum Prob-
lem (mHSSP) Let Q be an integer, and let {X;},cq1, .. B}
be vectors in Zg. Let ai,...,ap € ZM be vectors with
components in {0,1}. Vj = {1,...,u}, let h; € ZM
satisfying :

hj =airy,j +a2x27j +"'+aBCCB_’j mod Q
Given the modulus @ and the sample matrix H =
[hy;...;h,] € ZMX“ recover the vectors {xXitieq1,....By

and the weights vectors a;’s, up to a permutation of the
x;’s and a;’s.

Further denote H = [hy;...; h,] € ZM** as the sample
matrix, X = [x7,...,x5] € ZB*" as the matrix of hidden
private data and A = [aj;...;ag] € {0,1}M*B as the
hidden weight matrix. Thus, the above can be compactly
expressed as

H=AX mod @ (11)

Accordingly, the definition of multidimensional HLCP
(mHLCP) is the same as the above except each entry of the
hidden weight matrix A lies in a discrete interval {0, ..., c}
instead of {0, 1}.

Hence, with the multidimensional definition we note that
the above-mentioned gradient (9) can be seen as an instance
of mHLCP as it has a similar form as (11), where the
floating points can be scaled up to integers and the modulo
operation will not make a difference if a sufficiently large



@ is considered. To simplify the problem, here we consider
the weight in D is binary, i.e., L is an all one matrix and
D = R. We will show later even with this simplified setting
the mHSSP is still hard to solve under a large bath size B.
Hence, in what follows we will analyze the hardness of the
input reconstruction attack in FL via analyzing mHSSP, as
in the latter there are lots of existing cryptographic results
and tools to be exploited.

5. HSSP and attacks

HSSP is an extension of the Subset Sum Problem (SSP)
and the hardness of HSSP is not completely understood yet.
Note that SSP is a well-known NP-complete problem, thus
currently it is unknown if a deterministic polynomial algo-
rithm exists [23]. It is shown that, under certain parameter
settings, an HSSP-solver could be used to attack SSP [22],
e.g. when an HSSP instance having a unique solution can
be generated, solving such HSSP is sufficient for solving
SSP. Indeed, in the former, both the mixturing weights and
private data are hidden, while in the latter, only the weights
are hidden.

In what follows, we first introduce the necessary funda-
mentals of lattices and then introduce existing lattice attacks
for solving HSSP. We first start with the Nguyen-Stern attack
(NS attack), the very first HSSP attack raised by Nguyen
and Stern [39]. After that we will introduce two advanced
attacks based on the NS attack by Coron and Gini based on
different principles [20], [21].

5.1. Fundamentals of lattices

A lattice is a discrete subgroup of R™, which can be
defined as follows [40].

Definition 4. Lattice Given n linearly independent vec-
tors by,...,by, in R™, the lattice generated by the basis
b1,..., b, is defined as the set

d
L(by,...,b,) = {inbmi €Zi= 1n} ,
i=1
where m denotes the dimension of the lattice £, denoted
as dim(£) and n denotes its rank. If n = m, the lattice is
called full-rank. dim(£) means the rank of the lattice L.
Define B as the m x n base matrix with by,...,b,, as its
columns, then
L(B)=L(by,...,b,) ={B-x|x€Z"}.

It could be proved that £(B) = L(B’) if and only if
there exists an unimodular matrix U € GLg4(Z) such that
BU = B'. The determinant of the lattice £(B) is given as
\/det(BTB). It could be checked that if £L(B) = £L(B'),
det(L(B)) = det(L(B’)). From a geometrical point of
view, the determinant of a lattice is inversely proportional
to its density: the smaller the determinant, the denser the
lattice is.

In this paper, we generally consider integer lattices, i.e.,
the lattices belonging to Z™.

Definition 5. Orthogonal lattice Let L C Z™ be a lattice.
Its orthogonal lattice is given as

L= {y e Z"|vx € L, (x,y) = 0},

where ( , ) is inner product of R™. Its orthogonal lattice
modulo Q) is given as

/jé ={yeZ"vxe L, (x,y)=0 mod Q}.

The completion of a lattice £ is the lattice £ =
Spang (L) NZ™ = (L)L, where Spang (L) = {B-x|x €
R"} for £ = £(B). Note that (L)~ contains the original
lattice L.

Theorem 1. Let L C Z™ be a lattice. Then dim(L1) +
dim(L) = m.

Definition 6. Shortest vector Let || -|| denote the Euclidean
norm. Then we could find a non-zero vector v of the minimal
norm in every lattice L. The first minimum of L is A\ (L) =
IV, and v is called the shortest vector.

The following is a generalization of ;.

Definition 7. Successive minima Let L be a lattice of rank
n. Fori € {1,...,n}, the i-th successive minimum \;(L) is
defined by the minimum of maximum norm of any i linearly
independent lattice points.

The so-called LLL and BKZ algorithms are important
building blocks for designing HSSP attacks. A brief intro-
duction about them is given as follows:

e LLL: The LLL algorithm [41] is a polynomial time
lattice reduction algorithm with a basis of a lattice
L as input and output a basis which is LLL-reduced,
meaning that the basis is short and nearly orthogo-
nal.

o BKZ: The BKZ algorithm [42] is also a lattice re-
duction algorithm. Increasing the block-size param-
eter of the algorithm improves the accuracy, at the
cost of a longer computation time. Namely, BKZ-
2 can produce an LLL-reduced basis in polynomial
time, while with full block-size one can retrieve the
shortest vector of the lattice in exponential time.

5.2. NS attack

The whole process of the NS attack could be divided
into two steps:

o Step 1: The first step is based on orthogonal lattice
attack. As the only known information in (2) is h
(in Section 5.4 we will discuss how to extend to
the multidimensional case for (11)), the orthogonal
lattice attack starts with computing the orthogonal
lattice of h modulus Q, i.e., Cé(h). As h is a
linear combination of the hidden weight vectors
{ai}ieq1,..,B), the orthogonal lattice of A, ie.,
L+(A), is then contained in £3(h). Based on the
fact that a;’s are binary, the goal is to ensure the
first M — B short vectors of the LLL basis of Eé (h)



form a basis of £ (A). After obtaining £+ (A), then
compute its orthogonal (£1(A))L using the LLL
algorithm again, as (£1(A))" contains our target
lattice £(A). Note that the LLL algorithm is applied
twice. The first time is to compute the LLL-reduced
basis of Eé (h); the second time is to compute the
orthogonal lattice of £ (A) [43], [44].

e Step 2: The second step is to recover the binary
vectors a;” from a LLL-reduced basis of (L1 (A))*,
after that the hidden private data vector x can then
be recovered. Since the short vectors found by Step
1 may not be short enough, thus the BKZ algo-
rithm is applied in Step 2 to find shorter vectors.
Denote {v;}M % as the obtained short vectors in
(L+(A))*L. Given the fact that a;’s are binary, it
could be proved with high possibility that v;s are
either {a;}’s or {a; — a;}’s. Assume that the a;’s
are the only binary vectors in (£+(A))~, then take
B binary vectors in {v;}U{v; —v;}U{v;+v;} as
a;’s. After obtaining A, pick up a B x B sub-matrix
A’ from A with non-zero determinant modulus Q.
Then A’-x = h’ mod Q. Hence, the hidden private
data can be recovered as x = A’~'h’ mod Q.

The strategy described above is guaranteed to work with
a good probability if the parameters M, B, () satisfy certain
conditions. The core intuition behind those conditions is that
the short vectors of the LLL basis of £ (h) should form a
basis of £L1(A). Let the vector y be orthogonal modulo @
to h. We thus have

<y7h>:x1<yaal>+"'+$B<Y»aB>EO mod Qv
which implies that the vector

Py = (<Yu al>7 s <Y7aB>)
is orthogonal to the hidden private data vector x =
(z1,...,xB), le., py € Eé(x). It follows that if the
norm of py is less than the first minimum of ,Cé(x),
py must be a zero vector. Hence, y € L*(A). Since
dim(L+(A)) = M — B, let an upper bound of the M — B
successive minimum of £(A) is less than an estimation
of the lower bound of the first minimum of Eé(x). To
guarantee y € £1(A), the following inequality is required:

B
log@Q > 'tMB + logM—i-Elog(M—B),

MB
2(M — B)
where 0 < ¢ < 1 is decided by the so-called LLL Hermite
factor which controls the quality of the LLL-reduced basis.
For more details, we refer the readers to [22].

5.3. CG attacks

Recall that the BKZ algorithm is applied to find shorter
vectors in order to recover the binary vectors in Step 2, thus
the complexity of the NS attack algorithm is not polynomial
time. Coron and Gini [20], [21] have put forward two
alternatives of Step 2, which are able to recover the binary
vectors a;’s within a polynomial time.

The multivariate approach [20]: Instead of using the
BKZ algorithm to recover the shorter vectors, the multi-
variate approach proposes to recover the hidden vectors
a;’s using the multivariate quadratic polynomial system. Let
{u;};eq1,...,py denote a basis of (L1(A))* as the output
of the NS algorithm’s Step 1. Stacking them together and
denote as matrix U = [uy;...;ug] € ZM*B further define
a matrix W € ZB*B such that the following holds:

UW = A. (12)

The goal is then to recover the unknown W and A based
on the knowledge of U. Based on the knowledge that A is
binary, we thus have

Uli; W[ 4] = Ali, j] € {0,1}.

As 0,1 are solutions of the quadratic equation x
the above can thus be written as

(Uli;:], W[5 )% = (Ulis 1], W[ j]) = 0,
where ¢ = {1,...,M},j = {1,..., B}. Hence, the above
M B quadratic equations form a multivariate quadratic sys-
tem for unknown W € ZB*B_ Solving the quadratic system
we can obtain W, thereby recovering A.

We note that the above multivariate quadratic polynomial
system requires that M ~ B? instead of M = 2B in the
NS algorithm. With a bigger M, the complexity of Step 1
would be larger (see time complexity analysis in Section
6.1). To avoid the high complexity, the authors proposed a

blocks orthogonal lattice attack to reduce the complexity of
Step 1 to O(B?).

2_x=0,

The statistical approach [21]: Recall (12), since the ranks
of U and A are both B, thus W is invertible over Q. Denote
its inverse as matrix V.= W~1. We then have

U=A-V.

We remark that the above has a similar form of the so-called
continuous parallelepiped, which is defined as

B
,P[,l)l](V) = {Z CiV[i; :Hci S [—1, 1]},

where V € GLg(R). Given the fact that A is binary, thus
A - V[i;:] belongs to the following discrete parallelepiped
with binary weights:

B
Py (V) = > eiV[isi]le € {0, 1}}.
i=1
Hence,

{U =,y € Proy(V) C Pea (V).
There is an existing algorithm called Nguyen-Regev al-
gorithm [45] which is able to return with probability a
good approximation of a row of V, given poly(n) vectors
uniformly sampled form P[_; ;;(V). Coron and Gini first
apply the Nguyen-Regev algorithm and then conduct some
modifications such that the target binary A can be recovered.



M log Q First LLL Second LLL
> B O(BM) O(MT7 - B?) O(M®°/B?)

B? o(B3?) O(B15) O(B1Y)

2B O(B?) O(B?) O(B7)
B+1 || O(B?logB) | O(B%log? B) | O(B"log? B)

TABLE 1: Modulus size and time complexity of the two
LLL algorithms of Step 1.

5.4. Optimized attack for mHSSP

As the input of FL is often multidimensional, thus we
modify the above attack to exploit this property. One modi-
fied way is to change Eé(h) to Eé(H) In existing attacks,
the orthogonal lattice £5(h) is constructed as follows:

Recall h; denotes the first entry of vector h, for simplic-
ity we assume the greatest common divisor ged(hy, Q) =1
(see Appendix A for a more generalized discussion). In
addition, ((Q@,0,...,0),h) = 0 mod Q. Define h’ =
(ha,...,har) and a basis of L‘é(h) can be constructed as

Q 0
~h'- (A mod Q) I
as it can be verified that each column vector is orthogonal
to h modulo Q.

Note that in practice, the dimension of the hidden private
data v can be very large, for example v = 3072 using
CIFAR-100 [46] as the training dataset, thus sometimes it
is not necessary to use all u columns for reconstruction. we
can take a few columns, say r < u , to construct Lé(H),
i.e. the column dimension of H is r. For simplicity, assume
H[1,...,7;:] € Z"*" is invertible modulus @ and denote
the inverse as H L Hence, we then construct a basis of
Eé(H) with the following:

o1, 0
~H[r+1,...,M;:] - H ' Iy,

After constructing ﬁé(H), the rest procedures of mHSSP
attacks are the same as the original HSSP attacks.

T

T

6. Attack complexity and defense

In this section, we first introduce the time complexity of
the above HSSP attacks, then we briefly explain a popular
defense called secure data aggregation and analyze its time
complexity accordingly.

6.1. Complexity analysis

In Table 1 the modulus size of the HSSP and time
complexity of the first LLL algorithm and second LLL
algorithm Step 1 are summarized [22], recall that M is
the number of neurons in the first fully connected layer,
which reflects the model complexities. For the NS algorithm,
the whole complexity may not be polynomial time. The
improved multivariate and statistical algorithms are in poly-
nomial time. Note that we only show the time complexity of

the two LLL algorithms in Step 1 because of the following
reasons: 1) all three attacks share the same Step 1; 2) in
the experiments it is shown that the main bottleneck of the
running time using the recent multivariate and statistical
attacks, lies in Step 1 as the time consumed in Step 2
grows slower than Step 1 when increasing the batch size
B. As for M, we can see that it does not dominate the time
complexity unless M > B (this can be avoided as one can
always select to use partial information if M is too big).
Overall, we conclude that we can expect the whole time
complexity to be O(BY) when the input data coefficients
are small compared to @, e.g. [0, 255] for the case of image
inputs.

6.2. Applying secure data aggregation before shar-
ing gradients

There are various ways to enhance the privacy of FL,
one of the most widely-adopted methods is to apply se-
cure data aggregation techniques to securely compute the
average of the local gradients without revealing them [47].
Popular secure data aggregation techniques include secure
multiparty computation [24], which allows multiple parties
to jointly compute the output of a function using their private
inputs without revealing each individual private input, and
homomorphic encryption [25], [48], [49], which guarantees
privacy by conducting computation only on encrypted do-
mains.

After applying secure data aggregation, the available
information to the server is thus the global average of the
local gradients of all clients. Assuming there are N clients,
let G, ;, D; and X; denotes the local gradient, the hidden
weight matrix, and input training data of client ¢ where
i ={1,..., N}, respectively. The global average of the local
gradients of (9), denoted as G ave, can then be represented
as,

1 N
Gw,ave = N ; Gw,i

X1

1 X2
ZE[DU Dy .. DN} .
Xy

That is, applying secure data aggregation implies that the
hidden inputs row dimension increases by N times. Hence,
the attack complexity directly increases from O(B?) to
O(N°BY).

7. Numerical results and discussions

We now proceed to demonstrate the numerical results
for mHSSP attacks.

7.1. Numerical results

Attack results: To demonstrate the attack results using mul-
tidimensional inputs, we choose to use training samples of
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(a) 20 training samples randomly selected from CIFAR-10.

5. I e 0 8 i
wEHEERY.: 0

(b) Reconstructed training samples using multidimensional NS attack.

o T 2 M
DR LT
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(d) Reconstructed training samples using multidimensional statistical attack.

Figure 1: Input reconstruction results of three different mHSSP attacks with B = 20 samples randomly selected from

CIFAR-10 dataset.

CIFAR-10 dataset where the dimension of ©u = 32x32x3 =
3072. In Fig. 1 we show the reconstructed samples using the
three described mHSSP attacks under the case of B = 20.
More specifically, we set M = 300 and the hidden weight
matrix A is randomly generated with uniform probability.
As we can see, all mHSSP attacks can successfully recover
the original input private samples, except the fact that the
order is permuted. Note that in this case, the reconstruction
is perfect, i.e., the Euclidean distance of the reconstructed
samples and the original samples is zero.

To get a feeling on how fast does the time complexity
grow with the batch size, in Fig. 2 we demonstrate the
running time in terms of the batch size B using the three
attacks. There we can see that, as expected, the recent
Multivariate and Statistical attacks are faster than NS attack.
While, the running time grows very fast when increasing the
batch size.

No restrictive assumption for samples with repeated
labels: As mentioned before, existing gradient inversion
attacks often require that the samples within a mini-batch
should not have repeated labels [9], otherwise the recon-
structed images for the same label would be quite similar.
We remark that this restrictive assumption is not required in
HSSP. To validate this, we randomly select 20 samples from
the same ’cat’ label of CIFAR-10, and test the input recon-
struction results using the three mHSSP attacks. Though all
images are from the same class, all the input samples can be
reconstructed perfectly except for the fact that their order is
permuted (see Fig. 3 in Appendix B). Hence, this confirms
the benefits of using HSSP to analyze the privacy leakage
in FL.
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Figure 2: Running time as a function of the batch size
B using three existing HSSP attacks including the NS,
multivariate and statistical attack.

7.2. Discussions

We remark that our paper is an initial work to analyze
the privacy leakage of gradient sharing in FL using HSSP,
there are many interesting directions to further explore. A
few of them are listed below:

1) Develop more optimized attacks using the bias
information provided in (10): Though the bias in-
formation is not directly computed using the input
training data but it contains information about the
weights of each row of the hidden weight matrix
D. This information is currently not investigated in
existing attacks, it is thus very potential to design
a more optimized attack by exploiting it.

2) Exploit the time complexity of attacks using the
dimension parameter u: In Section 5.4 we have
shown one way to deal with the multidimensional
property for constructing £$(H) So far this pa-
rameter is not investigated in existing attacks for
analyzing the time complexity, which is also very
crucial to further analyze as in machine learning
the dimension u is often quite large.

3) Analyze the hardness under more complex settings:
As mentioned in Section 4.3, we only consider a
simplified setting where the weight matrix D is
binary thus it reduces to mHSSP. While it is more
practical to consider the case where D is non-
binary, it thus reduces to mHLCP where the weights
are within the range of [0, ] (recall Definition 2).
We suspect that the time complexity might be much
higher than mHSSP as in practice the weight range
c can be very large.

8. Conclusion

In this paper, we took the first step to theoretically
analyze the problem of input reconstruction attack in FL
from a cryptographic view. By mathematically formulating
the gradients shared in an MLP network as a classical

cryptographic problem called HSSP, we adopted existing
HSSP tools to analyze it. Via HSSP attacks, we analytically
showed that the time complexity of input reconstruction
attack in FL increases as the batch size increases. This
analytical result explains why the reconstruction results
of existing gradient inversion attacks become very poor
when considering a big batch size. In addition, we showed
that adopting secure aggregation techniques would be a
good defense to input reconstruction attack as it directly
increases the time complexity of existing HSSP attacks
by N? times where N is the number of participants in
FL. We also discussed some interesting future directions
for further exploration. As an initial work on theoretically
analyzing the input reconstruction attack in FL by exploiting
cryptographic tools, our work calls for more researchers to
explore this exciting cross-disciplinary topic.
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Appendix A.
A general way to construct a basis of £} (h)

Besides the case of ged(hy, @) = 1 discussed before,

in what follows we discuss how to construct the basis of
L5(h) for other cases:

The case of h = 0 mod Q: in this case the basis can be
directly constructed as £3(h) = ZM.

The case of gcd(hi,Q) = ged(hy, ha,--

ha, Q) = d

where d # 1: the construction is the same as the case of
ged(hy, @) = 1 by simply replacing @ and h with Q/d
and h/d, respectively. Hence, the basis of L'é(h) can be
constructed using the same basis of Eé/d(h/d).
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(c) Reconstructed training samples using the multidimensional multivariate attack.
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(d) Reconstructed training samples using the multidimensional statistical attack.

Figure 3: Input reconstruction results using three different mHSSP attacks for the case that all samples within the mini-batch

are from the same class label.

The case of gcd(hy,ho, -+ ,hyp,Q) = d while
ged(h;,Q) = di # d, Vi € {l,...,M}: define
the first vector as y; := (Q/d1,0,...,0), the second
one is constructed as ys := (—(h2/d12) - ((h1/d1)™?

mod Q/dl), dl/d12, 0, . ,0) where d12 = ng(dl, d2)
This construction ensures (ys,h) =0 mod Q as

(y2,h) = —(ha/d12) - (h1/d1)™" mod Q/dy) - h
+ dihe/di2
= —(hy/dr2) - ((h1/d1)™" mod Q/dy) - (hy/dy) - dy
+ dlhz/dlg
= —(hg/di2) - di + diha/di2
=0 mod Q.

The third vector can be constructed as y3 := (—(hg/d123) -
((hi/d)~" mod Q/d) - ki,—(hs/di2s) - ((ha/d2)™"
mod Q/dz) - ka,di2/d123,0,...,0) where di23 =

ng(dl, da, dg) and kq, ko € Z satisfying k1 dy +kods = dis.
It could be checked that (ys5,h) = 0 mod Q. Hence, the
rest can be constructed similarly and collect them together
as [y1,¥2,---,yum], which is a basis of Eé(h).

Appendix B.
Attack results for the case of repeated labels

See Fig. 3 for the input reconstruction results of the case
where input samples in one mini-batch share the same label.



